
Rounding Techniques in Approximation Algorithms

Lecture 20: SDPs and Max Cut
Lecturer: Nathan Klein

1 Max Cut

In the Max Cut problem, we are given a graph G = (V, E) and we want to find a set S ⊆ V so
that |δ(S)| is maximized.

It’s not immediately clear how to find an integer linear program that solves max cut. We
might try to assign a variable xv ∈ {0, 1} for each vertex, and then maximize the number of edges
e = (u, v) for which xu 6= xv. The natural way to implement this would be to create variables xuv
for each e = {u, v} and maximize ∑{u,v}∈E xuv.

Now, we need to ensure that xuv ≤ |xu − xv|. It turns out this would work for min cut where
we minimize ∑{u,v}∈E xuv since we can write xuv ≥ xu − xv and xuv ≥ xv − xu, and now we are
only allowed to set xuv to 0 if the edges do not cross the cut. But for max cut, this is an issue. I
could try xuv ≤ xu − xv and xuv ≤ xv − xu, but this is hopeless, as if xu 6= xv we will constrain
xuv ≤ −1. At a high level, this is because absolute value is a convex function, and we can minimize
things over convex functions. But we cannot maximize.

There are, it turns out, some LPs we can write down that are valid relaxations. But they are all
fairly useless, with an integrality gap of 2, whereas taking a random half of the vertices gives us a
cut of size at least 1

2 |E| ≥
1
2OPT.

In this course, usually this would lead to an open problem, as was in the case of vertex cover.
However, in this instance, there turns out to be something quite beautiful we can do that leads to
a much better approximation algorithm. This idea is due to Delorme and Poljak [DP93] and was
then used by Goemans and Williamson [GW95] to obtain a better approximation for Max Cut.

1.1 Nonlinear Constraints

Let’s keep using our indicator variables xv ∈ {0, 1} to let us know if v is in our cut S ⊆ V or
not. But now let’s allow ourselves to use non-linear constraints. And for ease of notation, let’s let
xv ∈ {−1, 1} instead. Then, we can create variables yuv for each u, v ∈ V and write:

max ∑
{u,v}∈E

1
2
(1− yuv)

s.t. yuv = xuxv ∀u, v ∈ V
xv ∈ {−1, 1} ∀v ∈ V

We will create variables yvv as well, taking u, v ∈ V to not necessarily be distinct. We will also let
yuv and yvu be the same variable.

This program works because if xu and xv take different signs (i.e. are on different sides of the
cut) then yuv = −1 and this edge contributes 1 to the objective function. Otherwise yuv = 1 and

1

this edge contributes 0. Here’s another way to write the same program:

max ∑
{u,v}∈E

1
2
(1− yuv)

s.t. yuv = xuxv ∀u, v ∈ V
yvv = 1 ∀v ∈ V

This is equivalent since yvv = x2
v = 1 if and only if xv ∈ {−1, 1}. But now, there is only one

problematic set of constraints, this yuv = xuxv, and we don’t have to worry about the integer
versus linear program aspect. Note that xv is unconstrained.

Let’s "bash on regardless" and try to model this with linear constraints. And let’s not even
worry about writing them down: we have the ellipsoid method, after all. Let’s just delete the
constraint yuv = xuxv and solve the LP and hope we can implement a separation oracle.

Notice that this means that xu, xv are not in the LP any more, and the yuv values are uncon-
strained. So the LP will now lie to us. It will say, look, here’s a great solution! yuv = −1000 for all
yuv and, sure, I’ll set yvv = 1 for all v ∈ V. This will have a huge objective value and the LP will
be very proud for having found such a good max cut.

But it’s easy to refute these values. Remember, we’re trying to be the separation oracle
ourselves. Now, we return the hyperplane:

yuu + yvv + 2yuv ≥ 0

Why is this valid? Well, let’s rewrite it using the x values:

x2
u + x2

v + 2xuxv = (xu + xv)
2 ≥ 0

Nice. And now, using that yvv = 1 for all v ∈ V, our first inequality says yuv ≥ −1. So at least our
LP now can get at most value |E|.

So, we continue. Now maybe the LP returns a solution which sets yuv = −1 for all edges in a
triangle u, v, w. This is obviously wrong, so let’s see if we can refute this. The first thing we might
try is the following:

(xu + xv + xw)
2 ≥ 0

Which, expanded and replacing squared terms with 1 is:

3 + 2xuxv + 2xvxw + 2xuxw ≥ 0

Which is a refutation, giving us yuv + yvw + yuw ≥ − 3
2 . Note that this says the objective value of a

triangle is at most 3
2 −

1
2 (yuv + yvw + yuw) ≤ 3

2 +
1
2 ·

3
2 = 9

4 .
Now notice that all of our separating hyperplanes so far (which are linear in yuv) have

originated from inequalities like (∑v∈V cvxv)2 ≥ 0 for some c ∈ Rn. Can we capture all such
inequalities and automate this?

1.2 Semidefinite Programming and Second Moments

(∑v∈V cvxv)2 ≥ 0 is equivalent to 0 ≤ ∑u,v∈V cucvxuxv = ∑u,v∈V cucvyuv (where pairs u, v appear
twice). But letting Y = (yuv)u,v∈V , this is simply saying that cTYc ≥ 0. Sound familiar?

2

This is exactly asking that this matrix Y be PSD. Let’s think back for a moment to our constraint
yuv + yvw + yuw ≥ − 3

2 to let this sink in. Consider the matrix: 1 yuv yuw
yuv 1 yvw
yuw yvw 1

Then, letting c = (1, 1, 1), we have that 1TY1 ≥ 0, or equivalently: 3 + 2yuv + 2yvw + 2yuw ≥ 0. So
asking this matrix of y values to be PSD is capturing all constraints of the above form, and we can
already see that this is doing some non-trivial things. At least it’s separating over some solutions
that are clearly not optimal.

It’s not too difficult to prove that we can efficiently separate over the infinite constraint set
cTYc ≥ 0 for all c ∈ Rn. Notice that the resulting inequalities are linear in the yuv variables. So,
the ellipsoid method can solve this optimization problem up to any additive accuracy ε in time
polynomial in log(1/ε).1 This leads us to the following semidefinite program:

max ∑
{u,v}∈E

1
2
(1− yuv)

s.t. (yuv)u,v∈V � 0

yvv = 1 ∀v ∈ V

Notice that we just replaced the constraint yuv = xuxv with (yuv)u,v∈V � 0. This is of course
weaker than the original constraint, but it’s a relaxation. We’re still following the relax-and-round
framework, just instead of relaxing the integrality constraint (which did not even exist in our
formulation) we relaxed this quadratic one.

Fact 1.1. The integrality gap of this LP is at most 2
9/4 < 0.889.2

Proof. We already saw for the triangle a bound of 9
4 , even though OPT is clearly 2. We can

construct a lower bound by exhibiting a PSD matrix. 1 − 1
2 − 1

2
− 1

2 1 − 1
2

− 1
2 − 1

2 1

A nice way to check that this is PSD is to see that it is diagonally dominant, i.e. |aii| ≥ ∑j 6i |aij| for
all i. This implies that the matrix is PSD. One can also check Sylvester’s criterion, which says that
a matrix is PSD if and only if all of its principal minors are non-negative.

Now comes the intuition behind this PSD criterion:
1Since the constraint family is infinite, we can no longer solve the problem exactly, but since we’re approximating

the solution anyway it’s not a big deal.
2More complicated examples can bring this to ≈ 0.878.

3

Second Moments

The way to think about this is that we want a distribution over the signs x ∈ {−1, 1}n, and
instead of just looking at the first moments of this distribution, i.e. E [x] (as we have done
for the entire course so far), we are also looking at the second moments, E

[
xxT]. And what

do we know about any covariance matrix? It must be PSD, as for any distribution µ over
x ∈ {−1, 1}n we must have (as a reminder):

cTE
[

xxT
]

c = cT(∑
S

P [S] xxT)c = ∑
S

P [S] (yTx)2 ≥ 0

This opens up a new world of possibilities in terms of finding efficient relaxations. We will
continue to explore this in the last part of the course.

There is an alternate intuition as well involving optimizing over vectors xv ∈ Rn instead of
xv ∈ {−1,+1} and trying to maximize the angle between adjacent vectors. You can check out the
course notes linked from the website if you are interested in this perspective and vector programs.3

For now, let’s see how to round a solution given the covariance matrix.

1.3 Rounding

Let’s continue with our usual relax-and-round framework. Given a solution Y = (yuv)u,v∈V , how
do we actually round it?

Using our intuition from above, we treat Y as a covariance matrix and find a distribution µ
which has covariance matrix Y. We already saw an example of how to do this in the previous unit:
take Y, find its square root Y1/2, and let x = Y1/2r, where r ∈ {−1,+1}n samples each coordinate
independent at random to be −1 or +1 each with probability 1/2.

Here, we will do something slightly different. Instead of letting r be random ±1 entries, we
will each ri be an independently sampled Gaussian with mean 0 and variance 1. Now, similar to
the ±1 case, we have:

E
[

xxT
]
= E

[
Y1/2rrTY1/2

]
= Y1/2E

[
rrT
]

Y1/2 = Y

where we used that each Gaussian has variance 1 and each ri is independent.
Unfortunately, x = Y1/2r will not be in {−1,+1}n. If we could somehow sample from µ, get

covariance matrix Y, and ensure x was in −1, 1, we would get a 1-approximation. This is exactly
like rounding an LP: if we could get an integer solution with the same marginals as x, we would
obtain a 1-approximation.

Fact 1.2. Let µ be a distribution over vectors in {−1,+1}n and suppose E [xuxv] = yuv for all u, v ∈ V.
Then, we obtain a 1-approximation.

Proof. By linearity of expectation, the expected cost of our algorithm is ∑{u,v}∈E
1
2 (1−E [xuxv]) =

∑{u,v}∈E
1
2 (1− yuv) = c(y).

3Personally, I prefer the covariance view because it immediately suggests the question: what about third or fourth
moments? Which we will touch upon in the remainder of the course.

4

So, just like when rounding LPs, we must lose something when we get an integer distribution.
What’s the most natural way to round in this setting? Let’s do the triangle example, and maybe
you can guess what to do. There the covariance matrix and its square root are:

Y =

 1 − 1
2 − 1

2
− 1

2 1 − 1
2

− 1
2 − 1

2 1

 , Y1/2 ≈

 0.816 −0.408 −0.408
−0.408 0.816 −0.408
−0.408 −0.408 0.816

Let’s sample a random Gaussian, say we get r =

−0.14
0.78
0.37

 and look at Y1/2r. This is

−0.76
0.89
−0.12

.

How might you round this to {−1,+1}3?
It turns out the simplest idea works here. After sampling from our distribution µ over Rn with

covariance matrix Y, for each coordinate xi, let xi = 1 if xi ≥ 0 and −1 otherwise. Amazingly,
this gives an ≈ 0.878 approximation, the best known approximation algorithm for Max Cut. This
matches the integrality gap of this SDP and is optimal under the Unique Games Conjecture. Let’s
prove that the approximation ratio is at least 0.878: it’s not too difficult, in fact, using a result from
the 19th century.

vα

vβ

θ

Figure 1: A visual proof that the regions in which the signs differ have total angle 2θ. In the solid
yellow region, both signs will be positive, and in the white region, both will be negative. The
remainder is the desired region with total angle 2θ.

Lemma 1.3 (Sheppard’s Formula [She98]). Let α, β ∼ N (0, 1) be two correlated Gaussians such that
E [αβ] = ρ. Then, P [sign(α) 6= sign(β)] =

arccos(ρ)
π .

Proof. (α, β) is a multivariate Gaussian with covariance matrix
[

1 ρ
ρ 1

]
and mean 0. This uniquely

defines the distribution. A standard way to sample a multivariate Gaussian with covariance matrix
C is to sample r where each ri ∼ N (0, 1) independently and then output C1/2r. We have already
noticed this produces the desired covariance matrix.

Now, let vα be the first row of C1/2 and vβ the second. Then, α = 〈vα, r〉 and β = 〈vβ, r〉. α will
be positive if the angle between vα and r is in the range [−π

2 , π
2] and similarly for β. The angle of

r is uniformly random. So, the signs will be different according to Fig. 1, with probability equal to
to twice the angle between vα and vβ divided by 2π. Now:

ρ = 〈vα, vβ〉 = ‖vα‖‖vβ‖ cos(θ) = cos(θ),

5

where in the first equality we used that the covariance matrix is as above. This completes the
proof.

We can now use this to finish the proof. We will use the following computational lemma,
which we sketch by picture (see Fig. 2):

−1 −0.5 0 0.5 1
0

0.25

0.5

0.75

1

≈ 0.74

≈ 0.84 1
π arccos(ρ)

1
2 (1− ρ)

Figure 2: This can be verified mathematically, but one can check that the largest deviation occurs
at approximately −0.689 and has a ratio of approximately 0.878.

Lemma 1.4. For ρ ∈ [−1, 1], we have

arccos(ρ)
π

≥ 0.878 · 1
2
(1− ρ)

But now we’re done, as the expected number of edges cut is (by linearity of expectation):

E [|δ(S)|] = ∑
{u,v}∈E

arccos(yuv)

π
≥ 0.878 · ∑

{u,v}∈E

1
2
(1− yuv) = 0.878 · c(y)

As mentioned, this is also the integrality gap and this ratio can be improved unless the Unique
Games Conjecture is false [Kho+07].

6

	Max Cut
	Nonlinear Constraints
	Semidefinite Programming and Second Moments
	Rounding

